刷题首页
题库
初中数学
题干
如图所示,在正方形ABCD中,M是BC的中点,CN平分
.
(1)求证:
.
(2)在第(1)题中,如果M不是BC边的中点,而是上面任意一点,那么结论
是否仍成立?请证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2019-07-11 01:58:19
答案(点此获取答案解析)
同类题1
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点
A.
(1)求证:AE=BF;
(2)如图1,连接DF、CE,探究线段DF与CE的关系并证明;
(3)如图2,若AB=
,G为CB中点,连接CF,直接写出四边形CDEF的面积.
同类题2
如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD于点
A.
(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
同类题3
如图,
E
,
F
是正方形
ABCD
的对角线
AC
上的两点,
AC
=8,
AE
=
CF
=2,则四边形
BEDF
的周长是_________.
同类题4
如图,Rt△CEF中,∠C=90°,∠CEF, ∠CFE外角平分线交于点A,过点A分别作直线CE、CF的垂线,B、D为垂足.
(1)求证:四边形ABCD是正方形,
(2)已知AB的长为6,求(BE+6)(DF+6)的值,
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR=
.
同类题5
如图,四边形
为矩形,四边形
为菱形.
求证:
;
试探究:当矩形
边长满足什么关系时,菱形
为正方形?请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明