刷题首页
题库
初中数学
题干
如图,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE
2
+BG
2
=2a
2
+2b
2
,其中正确结论是( )
A.①
B.②
C.①②
D.①②③
上一题
下一题
0.99难度 单选题 更新时间:2018-12-07 01:15:13
答案(点此获取答案解析)
同类题1
(1)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF⊥AG于点
A.
求证:AE=BF
(2)如图,
□
ABCD中,
的平分线
交边
于
,
的平分线
交
于
,交
于
.若AB=3,BC=5,求EG的长.
同类题2
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(8,8),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、C
A.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;判断线段HG、OH、BG的数量关系,并说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
同类题3
如图①,正方形ABCD,点E,F分别在AB,CD上,DG⊥EF于点 H.
(1)求证:DG=EF;
(2)在图①的基础上连接AH,如图②,若 AH=AD,试确定DF与 CG的数量关系,并说明理由;
(3)在(2)的条件下,作∠FEK=45°,点 K在 BC边上,如图③,若AE=KG=2,求EK的长.
同类题4
如图,正方形
ABCD
,将边
BC
绕点
B
逆时针旋转60°,得到线段
BE
,连接
AE
,
CE
.
(1)求∠
BAE
的度数;
(2)连结
BD
,延长
AE
交
BD
于点
F
.
①求证:
DF=EF
;
②直接用等式表示线段
AB
,
CF
,
EF
的数量关系.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明