刷题首页
题库
初中数学
题干
如图:△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB与AC、AE分别交于点O、E,连接EC.
【小题1】求证:AD=EC;(4分)
【小题2】当∠BAC=90º时,求证:四边形ADCE是菱形;(3分)
【小题3】在(2)的条件下,若AB=AO,且OD=
,求菱形ADCE的周长.(5分)
上一题
下一题
0.99难度 解答题 更新时间:2012-06-08 04:49:57
答案(点此获取答案解析)
同类题1
如图,在矩形
ABCD
中,
E
是
AD
上一点,
PQ
垂直平分
BE
,分别交
AD
、
BE
、
BC
于点
P
、
O
、
Q
,连接
BP
、
EQ
(1)求证:四边形
BPEQ
是菱形;
(2)若
AB
=12,
F
为
AB
的中点,
OF
+
OB
=18,求
PQ
的长.
同类题2
下列命题中错误的是()
A.两组对边分别对应相等的四边形是平行四边形
B.两条对角线相等的平行四边形是矩形
C.两条对角线垂直的平行四边形是菱形
D.两条对角线垂直且相等的四边形是正方形
同类题3
如图,在菱形
ABCD
中,
AE
⊥
BC
,
AF
⊥
CD
,垂足分别为
E
、
F
,求证:
BE
=
DF
.
同类题4
如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
【小题1】若AC=6,AB=10,求⊙O的半径;
【小题2】连接OE、ED、DF、EF.若四边形BDEF是平行四边形,
试判断四边形OFDE的形状,并说明理由.
同类题5
下列说法正确的有几个( )
(1)对角线互相平分的四边形是平行四边形;(2)对角线相等的四边形是矩形;(3)对角线互相垂直的四边形是菱形;(4)对角线互相垂直且相等的平行四边形是正方形;(5)对角线相等的平行四边形是矩形.
A.1个
B.2个
C.3个
D.5个
相关知识点
图形的性质
四边形
特殊的平行四边形
菱形的判定
证明已知四边形是菱形