刷题首页
题库
初中数学
题干
如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40
cm
.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-05 11:51:32
答案(点此获取答案解析)
同类题1
如图,正方形ABCD与矩形EFGH在直线l的同侧,边AD,EH在直线l上,且AD=7cm,EH=5cm,EF=4cm.保持正方形ABCD不动,将矩形EFGH沿直线l左右移动,连接BF,CG,则BF+CG的最小值为
______
cm.
同类题2
(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;
(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=m: n,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
同类题3
如图,在正方形
ABCD
中,
E
、
F
分别是边
CD
、
AD
上的点,且
CE
=
DF
,
BE
、
CF
相交于点
G
.
求证:
BE
⊥
CF
.
同类题4
如图,在正方形
ABCD
中,
E
是边
BC
上的一动点(不与点
B
、
C
重合),连接
DE
、点
C
关于直线
DE
的对称点为
C
′,连接
AC
′并延长交直线
DE
于点
P
,
F
是
AC
′的中点,连接
DF
.
(1)求∠
FDP
的度数;
(2)连接
BP
,请用等式表示
AP
、
BP
、
DP
三条线段之间的数量关系,并证明;
(3)连接
AC
,若正方形的边长为
,请直接写出△
ACC
′的面积最大值.
同类题5
综合与实践—探究正方形旋转中的数学问题
问题情境:已知正方形
中,点
在
边上,且
.将正方形
绕点
顺时针旋转得到正方形
(点
,
,
,
分别是点
,
,
,
的对应点).同学们通过小组合作,提出下列数学问题,请你解答.
特例分析:(1)“乐思”小组提出问题:如图1,当点
落在正方形
的对角线
上时,设线段
与
交于点
.求证:四边形
是矩形;
(2)“善学”小组提出问题:如图2,当线段
经过点
时,猜想线段
与
满足的数量关系,并说明理由;
深入探究:(3)请从下面
,
两题中任选一题作答.我选择题.
A.在图2中连接
和
,请直接写出
的值.
B.“好问”小组提出问题:如图3,在正方形
绕点
顺时针旋转的过程中,设直线
交线段
于点
.连接
,并过点
作
于点
.请在图3中补全图形,并直接写出
的值.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明