刷题首页
题库
初中数学
题干
正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于
A.
(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;
(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;
(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-09 11:23:15
答案(点此获取答案解析)
同类题1
如图所示,四边形
是正方形,
、
交于点
,
平分
,
垂直
,交
于点
,交
于点
,交
于点
.求证:
;
.
同类题2
综合与实践—探究正方形旋转中的数学问题
问题情境:已知正方形
中,点
在
边上,且
.将正方形
绕点
顺时针旋转得到正方形
(点
,
,
,
分别是点
,
,
,
的对应点).同学们通过小组合作,提出下列数学问题,请你解答.
特例分析:(1)“乐思”小组提出问题:如图1,当点
落在正方形
的对角线
上时,设线段
与
交于点
.求证:四边形
是矩形;
(2)“善学”小组提出问题:如图2,当线段
经过点
时,猜想线段
与
满足的数量关系,并说明理由;
深入探究:(3)请从下面
,
两题中任选一题作答.我选择题.
A.在图2中连接
和
,请直接写出
的值.
B.“好问”小组提出问题:如图3,在正方形
绕点
顺时针旋转的过程中,设直线
交线段
于点
.连接
,并过点
作
于点
.请在图3中补全图形,并直接写出
的值.
同类题3
已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF=CD,过点F作FG⊥FC交AD于点G.
(1)求证:GF=GD;
(2)联结AF,求证:AF⊥DE.
同类题4
如图,边长为2的正方形ABCD,以CD为斜边作等腰直角三角形CDE,连接线段AE,则AE的长为( )
A.
B.
C.
D.
同类题5
如图,在正方形ABCD中,E为直线AB上的动点(不与A、B重合),作射线DE并绕点D逆时针旋转45°,交直线BC于点F,连接EF.
探究:当点E在边AB上,①求证:EF=AE+CF.
应用:(1)当点E在边AB上,且AD=2时,求△BEF的周长;
(2)当点E在BA延长线上时,判断EF,AE,CF三者的数量关系,并说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
四边形综合