刷题首页
题库
初中数学
题干
(问题情境)
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
(探究展示)
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
(拓展延伸)
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-31 02:57:05
答案(点此获取答案解析)
同类题1
在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.
同类题2
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边中点,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F
(1)当点E在AC边上时(如图1),求证CE=BF
(2)在(1)的条件下,求证:
(3)当∠EDF绕D点旋转到图3的位置即点E、F分别在AC、CB边的延长线上时,上述(2)结论是否成立?若成立,请给予证明;若不成立,
又有怎样的数量关系?请写出你的猜想,不需证明.
同类题3
如图,
□
的对角线
相交于点
,且
AE∥BD
,
BE∥AC
,
OE
=
CD
.
(1)求证:四边形
ABCD
是菱形;
(2)若
AD
= 2,则当四边形
ABCD
的形状是_______________时,四边形
的面积取得最大值是_________________.
同类题4
问题提出:
(1)如图①,若正方形
的边长为6,点
分别为边
上的点,且
,
与
交于点
,连接
,则
;
问题探究:
(2)如图②,
,
是等腰直角三角形,顶点
分别在
的两边上,试说明点
在
的平分线上;
问题解决:
(3)如图③,
,
是等边三角形,顶点
分别在
的两边上,点
在
上,且
,连接
,求
的最小值.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明