刷题首页
题库
初中数学
题干
在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).
对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.
上一题
下一题
0.99难度 填空题 更新时间:2019-07-11 10:09:52
答案(点此获取答案解析)
同类题1
若矩形的一个短边与长边的比值为
,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).
同类题2
(探索发现)
如图①,将
沿中位线
折叠,使点
的对应点
落在
边上,再将
分别沿直线
和直线
折叠,使得
、
的对应点恰好落在点
处,折叠后的三个三角形拼合形成一个四边形
,请判断四边形
的形状.小刚在探索这个问题时发现四边形
是矩形,并展示了如下的证明方法:
证明:∵
是
的中位线,
∴
,
,
由折叠性质可知
,
,
,
,
∴______,
,
∴
,
∴四边形
是平行四边形.
∵______,
∴四边形
是矩形.
(1)请补全小刚的证明过程;
(2)连接
,当
时,直接写出线段
、
、
之间的数量关系:______;
(理解运用)
(3)如图②,在四边形
中,
,
,
,
,
,点
为
边的中点,把四边形
折叠成如图2所示的正方形
,顶点
、
落在点
处,顶点
、
落在线段
上的点
处,求
的长;
(拓展迁移)
如图③,在四边形
中,
,
,
,
,
,沿直线
折叠四边形
,使得点
与点
重合,点
落在
边的点
处,点
为
上一点,再沿直线
折叠四边形
,此时点
与点
恰好重合,得到新的四边形
.
(4)判断四边形
的形状,并说明理由.
同类题3
(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,
的顶点以及点
均在格点上.
①直接写出
的长为______;
②画出以
为边,
为对角线交点的平行四边形
.
(2)如图2,画出一个以
为对角线,面积为6的矩形
,且
和
均在格点上(
、
、
、
按顺时针方向排列).
(3)如图3,正方形
中,
为
上一点,在线段
上找一点
,使得
.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)
同类题4
如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40
cm
.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长.
同类题5
如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DE,AE,BD交于点
A.
(1)求∠AFB的度数;
(2)求证:BF=EF;
(3)连接CF,直接用等式表示线段AB,CF,EF的数量关系.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明