刷题首页
题库
高中数学
题干
设椭圆
的左焦点为
,且椭圆经过点
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
(
为椭圆上顶点)与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求直线
的斜率.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-03 07:41:45
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.
(1)求椭圆的标准方程;
(2)设直线
与椭圆的交于
两点,
为坐标原点,且
,证明:直线
与圆
相切.
同类题2
已知椭圆
过点
,且离心率为
.
(1)求椭圆
的方程;
(2)过
作斜率分别为
的两条直线,分别交椭圆于点
,且
,证明:直线
过定点.
同类题3
已知椭圆的中点在原点,焦点在坐标轴上,且长轴长为12,离心率为
,则椭圆的方程为________.
同类题4
椭圆C:
(a>b>0)的左、右焦点分别为
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为
,直线MB的斜率为
,证明
为定值,并求出该定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题