刷题首页
题库
高中数学
题干
已知椭圆C:
的右焦点为
,过点F的直线交椭圆C于A,B两点,且AB的中点坐标为
求椭圆C的方程;
若椭圆的下顶点为D,经过点
且斜率为k的直线与椭圆C交于不同两点P,
(均异于点
),证明:直线DP与DQ的斜率之和为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-07 11:40:17
答案(点此获取答案解析)
同类题1
已知
,
是动点,以
为直径的圆与圆
:
内切.
(1)求
的轨迹
的方程;
(2)设
是圆
与
轴的交点,过点
的直线与
交于
两点,直线
交直线
于点
,求证:
三点共线.
同类题2
已知椭圆
离心率
,过左焦点
且垂直于
轴的直线交椭圆于点
,且
.
(1)求椭圆的方程;
(2)点
在椭圆上,求
的最大值.
同类题3
已知离心率为
的椭圆
过点
.
(1)求椭圆
的方程;
(2)过点
作斜率为
直线
与椭圆相交于
两点,求
的长.
同类题4
已知椭圆
过点
,且离心率
(1)求椭圆
的标准方程
(2)是否存在过点
的直线
交椭圆与不同的两点
,且满足
(其中
为坐标原点)。若存在,求出直线
的方程;若不存在,请说明理由。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆的中点弦