刷题首页
题库
高中数学
题干
已知
是椭圆
的两个焦点,过
且垂直于
轴的直线交
于
两点,且
,则
的方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-09 08:19:56
答案(点此获取答案解析)
同类题1
已知抛物线
的焦点为椭圆
的右焦点,且椭圆长轴的长为4,
、
是椭圆上的两点;
(1)求椭圆标准方程;
(2)若直线
经过点
,且
,求直线
的方程;
(3)若动点
满足:
,直线
与
的斜率之积为
,是否存在两个定点
、
,使得
为定值?若存在,求出
、
的坐标;若不存在,请说明理由;
同类题2
已知椭圆
C
:
(
)的离心率为
,短轴长为4.
(1)求椭圆方程;
(2)过
作弦且弦被
P
平分,求此弦所在的直线方程及弦长.
同类题3
已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
同类题4
已知椭圆
的离心率为
,下顶点为
,
为椭圆的左、右焦点,过右焦点的直线与椭圆交于
两点,且
的周长为
.
(I)求椭圆
的方程;
(II)经过点
的直线与椭圆
交于不同的两点
(均异于点
),试探求直线
与
的斜率之和是否为定值,证明你的结论.
同类题5
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
与椭圆
交于
、
两点,试证明:当
时,弦
的长为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的通径问题