刷题首页
题库
初中数学
题干
已知:四边形
ABCD
是平行四边形,两边
AB
,
AD
的长是关于
x
的方程
的两个实数根.
(1)当
m
为何值时,四边形
ABCD
是菱形?
(2)求出此时菱形
ABCD
的边长.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-14 05:18:56
答案(点此获取答案解析)
同类题1
如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、D
A.
(1)求证:四边形BDFG为菱形;
(2)若AG=13,CF=6,求四边形BDFG的周长.
同类题2
如图,在四边形
中,
,
,对角线
,
交于点
,
平分
,过点
作
,交
的延长线于点
,连接
.
(1)求证:四边形
是菱形;
(2)若
,
,求
的长.
同类题3
如图,在周长为12的菱形ABCD中,CE=1,CF=2,若点P为对角线BD上一动点,则PE+PF的最小值是( )
A.
B.2
C.3
D.5
同类题4
如图,在平面直角坐标系
xOy
中,
O
为坐标原点,点
A
(
a
,0),
B
(
m
,
n
),
C
(
p
,
n
),其中
m
>
p
>0,
n
>0,点
A
,
C
在直线
y
=﹣2
x
+10上,
AC
=2
,
OB
平分∠
AOC
.
(1)求△
OAC
的面积;
(2)求证:四边形
OABC
是菱形;
(3)射线
OB
上是否存在点
P
,使得△
PAC
为直角三角形?若存在,求出点
P
的坐标;若不存在,请说明理由.
同类题5
如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S
菱形
ABCD
=24,则OH的长为______________.
相关知识点
图形的性质
四边形
特殊的平行四边形
菱形的判定与性质综合
根据菱形的性质与判定求线段长