刷题首页
题库
高中数学
题干
已知点
F
1
,
F
2
分别为椭圆
的左、右焦点,点
P
为椭圆上任意一点,
P
到焦点
F
2
的距离的最大值为
,且△
PF
1
F
2
的最大面积为1.
(Ⅰ)求椭圆
C
的方程.
(Ⅱ)点
M
的坐标为
,过点
F
2
且斜率为
k
的直线
L
与椭圆
C
相交于
A
,
B
两点.对于任意的
是否为定值?若是求出这个定值;若不是说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-22 08:04:28
答案(点此获取答案解析)
同类题1
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)已知直线
l
与椭圆相交于
P
、
Q
两点,
O
为原点,且
OP
⊥
OQ
.试探究点
O
到直线
l
的距离是否为定值?若是,求出这个定值;若不是,说明理由.
同类题2
已知椭圆
:
(
)的左,右焦点分别为
,
,且经过点
.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线与椭圆
交于
,
两点,求
面积的最大值(
为坐标原点).
同类题3
如图,椭圆
:
的离心率为
,设
,
分别为椭圆
的右顶点,下顶点,
的面积为1.
(1)求椭圆
的方程;
(2)已知不经过点
的直线
:
交椭圆于
,
两点,且
,求证:直线
过定点.
同类题4
已知椭圆
的左、右焦点分别为
,过点
且斜率为
的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为
A
,
B
,过右焦点
的直线
l
交椭圆于
P
,
Q
两点,求四边形
APBQ
面积的最大值.
同类题5
已知椭圆
长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线
过点
,且与椭圆相交于另一点
.
(1)求椭圆的方程;
(2)若线段
长为
,求直线
的倾斜角;
(3)点
在线段
的垂直平分线上,且
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题