刷题首页
题库
高中数学
题干
如图,椭圆
的离心率是
,左右焦点分别为
,
,过点
的动直线
与椭圆相交于
,
两点,当直线
过
时,
的周长为
.
(1)求椭圆
的方程;
(2)当
时,求直线
方程;
(3)已知点
,直线
,
的斜率分别为
,
.问是否存在实数
,使得
恒成立?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-13 09:47:38
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左,右焦点分别为
,
,且经过点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
作一条斜率不为
的直线
与椭圆
相交于
两点,记点
关于
轴对称的点为
.证明:直线
经过
轴上一定点
,并求出定点
的坐标.
同类题2
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
同类题3
已知抛物线
与抛物线W相交于A、B、C、D四点,AB//CD,
,AD在y轴右侧。
(1)求k的取值范围;
(2)证明:直线AC与BD相交于定点E,并求出定点E的坐标.
同类题4
如图
为椭圆C:
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
同类题5
已知椭圆
的左焦点为
,左顶点为
.
(1)
是椭圆上的任意一点,求
的取值范围;
(2)已知直线
与椭圆相交于不同的两点
(均不是长轴的端点),
,垂足为
且
,求证:直线
恒过定点.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题
椭圆中的定值问题