刷题首页
题库
高中数学
题干
已知椭圆
:
(
)过点
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若动点
在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.求直线
是否恒过定点,如果是则求出该定点的坐标,不是请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-19 09:10:14
答案(点此获取答案解析)
同类题1
已知圆
经过椭圆
:
的两个焦点和两个顶点,点
,
,
是椭圆
上的两点,它们在
轴两侧,且
的平分线在
轴上,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)证明:直线
过定点.
同类题2
已知焦点在
轴上的椭圆
,短轴的一个端点与两个焦点构成等腰直角三角形,且椭圆过点
.
(1)求椭圆
的标准方程;
(2) 设
依次为椭圆的上下顶点,动点
满足
,且直线
与椭圆另一个不同于
的交点为
.求证:
为定值,并求出这个定值.
同类题3
已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.
同类题4
已知圆
,圆
,动圆
P
与圆
M
外切并且与圆
N
内切,圆心
P
的轨迹为曲线
C
.
(1)求曲线
C
的方程;
(2)设不经过点
的直线
l
与曲线
C
相交于
A
,
B
两点,直线
QA
与直线
QB
的斜率均存在且斜率之和为-2,证明:直线
l
过定点.
同类题5
在平面直角坐标系
xOy
内,点(
)在椭圆
E
:
(
a
>0,
b
>0),椭圆
E
的离心率为
,直线
l
过左焦点
F
且与椭圆
E
交于
A
、
B
两点
(1)求椭圆
E
的标准方程;
(2)若动直线
l
与
x
轴不重合,在
x
轴上是否存在定点
P
,使得
PF
始终平分∠
APB
?若存在,请求出点
P
的坐标:若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题