刷题首页
题库
高中数学
题干
设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-19 08:02:56
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
、
,离心率为
,点
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
、
两点,过点
作直线
的垂线
交圆
:
于另一点
.若
的面积为3,求直线
的斜率.
同类题2
已知椭圆
的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
同类题3
如图,已知椭圆
C
:
1(
a
>
b
>0)的右焦点为
F
,
A
(2,0)是椭圆的右顶点,过
F
且垂直于
x
轴的直线交椭圆于
P
,
Q
两点,且|
PQ
|=3.
(1)求椭圆的方程;
(2)过点
A
的直线
l
与椭圆交于另一点
B
,垂直于
l
的直线
l
′与直线
l
交于点
M
,与
y
轴交于点
N
,若
FB
⊥
FN
且|
MO
|=|
MA
|,求直线
l
的方程.
同类题4
已知椭圆
的离心率为
,
M
是椭圆
C
的上顶点,
,F2是椭圆
C
的焦点,
的周长是6.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)过动点
P
(1,t)作直线交椭圆
C
于
A
,
B
两点,且|PA|=|PB|,过
P
作直线
l
,使
l
与直线
AB
垂直,证明:直线
l
恒过定点,并求此定点的坐标.
同类题5
已知椭圆
的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于
,直线
l
与椭圆
C
交于
两点.
(1)求椭圆
C
的方程;
(2)过点
O
作直线
l
的垂线,垂足为
D
.若
,求动点
D
的轨迹方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题