刷题首页
题库
高中数学
题干
如图,在四棱锥
中,
底面
,
,点
为棱
的中点.
(1)证明:
;
(2)求直线
与平面
所成角的正弦值;
(3)若
为棱
上一点,满足
,求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2014-06-20 04:35:53
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,底面
为直角梯形,
,且
,
平面
.
(1)求
与平面
所成角的正弦值;
(2)棱
上是否存在一点
满足
?若存在,求
的长;若不存在,说明理由.
同类题2
如图,已知正方形
的边长为
,
分别是
的中点,
⊥平面
,且
,则点
到平面
的距离为
A.
B.
C.
D.1
同类题3
在棱长为
的正方体
中,
、
分别是棱
、
上的点,且
.
(1)当
、
在何位置时,
?
(2)是否存在点
、
,使
面
?
(3)当
、
在何位置时三棱锥
的体积取得最大值?并求此时二面角
的大小.
同类题4
已知正方体
,
E
,
F
分别是
和
CD
的中点.
(1)求异面直线
AE
与
所成的角的大小;
(2)求证:
平面
.
同类题5
在四棱锥
P
-
ABCD
中,底面
ABCD
是一个平行四边形,
=(2,-1,-4),
=(4,2,0),
=(-1,2,-1).
(1)求证:
PA
⊥底面
ABCD
;
(2)求四棱锥
P
-
ABCD
的体积;
(3)对于向量
a
=(
x
1
,
y
1
,
z
1
),
b
=(
x
2
,
y
2
,
z
2
),
c
=(
x
3
,
y
3
,
z
3
),定义一种运算:
(
a
×
b
)·
c
=
x
1
y
2
z
3
+
x
2
y
3
z
1
+
x
3
y
1
z
2
-
x
1
y
3
z
2
-
x
2
y
1
z
3
-
x
3
y
2
z
1
.
试计算(
)·
的绝对值的值;说明其与四棱锥
P
-
ABCD
体积的关系,并由此猜想向量这一运算(
)·
的绝对值的几何意义.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明