刷题首页
题库
高中数学
题干
如图,四棱柱
中,侧棱
底面
,
,
,
,
,
为
棱的中点.
(1)证明
;
(2)求二面角
的余弦值;
(3)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-09 02:42:47
答案(点此获取答案解析)
同类题1
若正三棱锥P-ABC侧面互相垂直,则棱锥的高与底面边长之比为_____.
同类题2
正方体
ABCD
-
A
1
B
1
C
1
D
1
的棱长为 2,且
AC
与
BD
交于点
O
,
E
为棱
DD
1
中点,以
A
为原点,建立空间直角坐标系
A
-
xyz
,如图所示.
(Ⅰ)求证:
B
1
O
⊥平面
EAC
;
(Ⅱ)若点
F
在
EA
上且
B
1
F
⊥
AE
,试求点
F
的坐标;
(Ⅲ)求二面角
B
1
-
EA
-
C
的正弦值.
同类题3
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
同类题4
如图,已知三棱柱
,平面
平面
,
,
,
,
,
分别是
,
的中点.
(1)证明:
;
(2)求直线
与平面
所成角的正弦值.
同类题5
如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=
,BE=
EC,AD=2D
A.
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明