刷题首页
题库
高中数学
题干
直三棱柱
中,底面
为等腰直角三角形,
,
,
,
是侧棱
上一点,设
.
(1) 若
,求
的值;
(2) 若
,求直线
与平面
所成的角.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-01 10:18:33
答案(点此获取答案解析)
同类题1
已知在直四棱柱
中,
AD
∥
BC
,
AB
⊥
BC
,
,
AB
=1,
,
为
的中点,平面
与平面
所成的锐二面角的余弦值为
.
(1)求证:
;
(2)若点
是棱
上的点,且三棱锥
的体积为
,求直线
和平面
所成角的正弦值的大小.
同类题2
在长方体
ABCD-A
1
B
1
C
1
D
1
中,
AB
=4,
AD
=3,
AA
1
=2,
P
,
Q
,
R
,
S
分别是
AA
1
,
D
1
C
1
,
AB
,
CC
1
的中点.
证明:
PQ
∥
RS
.
同类题3
如图,已知三棱柱
,平面
平面
,
,
,
,
,
分别是
,
的中点.
(1)证明:
;
(2)求直线
与平面
所成角的正弦值.
同类题4
如图,在三棱柱ABC-A
1
B
1
C
1
中,侧棱垂直于底面,
为等腰直角三角形,∠BAC=90°,且AB=AA
1
=4,D,E,F分别为B
1
A,C
1
C,BC的中点.
(1)求证:DE∥平面ABC;
(2)求点B
1
到平面AFE的距离.
同类题5
已知四棱锥
的底面是直角梯形,
,
为
中点,
与
交于
点,
,
平面
.
(1)求证:
;
(2)若
,求二面角
的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明