刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
上一题 下一题 0.99难度 解答题 更新时间:2013-11-01 03:08:47

答案(点此获取答案解析)

同类题1

如图,PD垂直正方形ABCD所在平面,AB=2,E是PB的中点,,>.

(1)建立适当的空间坐标系,求出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.

同类题2

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.

(1)求二面角F-BE-D的余弦值;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

同类题3

如图,在四棱锥中,平面平面,,,,,,.

(1)求直线与平面所成角的正弦值.
(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.

同类题4

如图,已知正方形的边长为,分别是的中点,⊥平面,且,则点到平面的距离为
A.B.C.D.1
相关知识点
  • 空间向量与立体几何
  • 空间向量与立体几何
  • 空间向量的应用
  • 空间位置关系的向量证明
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)