刷题首页
题库
高中数学
题干
在长方体
ABCD-A
1
B
1
C
1
D
1
中,
AB
=4,
AD
=3,
AA
1
=2,
P
,
Q
,
R
,
S
分别是
AA
1
,
D
1
C
1
,
AB
,
CC
1
的中点.
证明:
PQ
∥
RS
.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-21 11:39:58
答案(点此获取答案解析)
同类题1
正方体
ABCD
-
A
1
B
1
C
1
D
1
的棱长为 2,且
AC
与
BD
交于点
O
,
E
为棱
DD
1
中点,以
A
为原点,建立空间直角坐标系
A
-
xyz
,如图所示.
(Ⅰ)求证:
B
1
O
⊥平面
EAC
;
(Ⅱ)若点
F
在
EA
上且
B
1
F
⊥
AE
,试求点
F
的坐标;
(Ⅲ)求二面角
B
1
-
EA
-
C
的正弦值.
同类题2
如图所示,
平面
,平面
平面
,四边形
为正方形,
,
,点
在棱
上.
(1)若
为
的中点
为
的中点,证明:平面
平面
;
(2)设
,是否存在
,使得平面
平面
?若存在,求出
的值;若不存在,说明理由.
同类题3
若直线l的方向向量为a=(-1,0,-2),平面α的法向量为u=(4,0,8),则( )
A.l∥α
B.l⊥α
C.l⊂α
D.l与α斜交
同类题4
如图,四棱柱
中,侧棱
底面
,
,
,
,
,
为
棱的中点.
(1)证明
;
(2)求二面角
的余弦值;
(3)设点
在线段
上,且直线
与平面
所成角的正弦值为
,求线段
的长.
同类题5
如图,正四棱柱ABCD-A
1
B
1
C
1
D
1
中,底面边长为2
,侧棱长为4,E,F分别是棱AB,BC的中点,EF∩BD=
A.求证:平面B
1
EF⊥平面BDD
1
B
1
.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明