刷题首页
题库
高中数学
题干
如图,在三棱锥
中,
,点
为边
的中点.
(Ⅰ)证明:平面
平面
;
(Ⅱ)求二面角
的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-06 03:51:58
答案(点此获取答案解析)
同类题1
已知直角梯形
,如图(1)所示,
,
,
,
,连接
,将
沿
折起,使得平面
平面
,得到几何体
,如图(2)所示.
(1)求证:
平面
;
(2)若
,求二面角
的大小.
同类题2
如图,已知多面体ABC-A
1
B
1
C
1
,A
1
A,B
1
B,C
1
C均垂直于平面ABC,∠ABC=120°,A
1
A=4,C
1
C=1,AB=BC=B
1
B=2.
(Ⅰ)证明:AB
1
⊥平面A
1
B
1
C
1
;
(Ⅱ)求直线AC
1
与平面ABB
1
所成的角的正弦值.
同类题3
在正方体
中,
分别在是线段
的中点,以下结论:①直线
丄直线
;②直线
与直线
异面;③直线
丄平面
;④
,其中正确的个数是( )
A.1
B.2
C.3
D.4
同类题4
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
是正方形,侧面
PAD
⊥底面
ABCD
,且
PA
=
PD
=
AD
,
E
,
F
分别为
PC
,
BD
的中点.
求证:(1)
EF
∥平面
PAD
;
(2)
PA
⊥平面
PDC
.
同类题5
如图,在三棱柱ABC-A
1
B
1
C
1
中,AA
1
C
1
C是边长为4的正方形.平面ABC⊥平面AA
1
C
1
C,AB=3,BC=5.
(1)求证:AA
1
⊥平面ABC;
(2)求二面角A
1
-BC
1
-B
1
的余弦值;
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直