刷题首页
题库
高中数学
题干
如图,已知正方形
ABCD
和矩形
ACEF
中,
AB
=
,
CE
=1,
CE
⊥平面
ABCD
.
(1)求异面直线
DF
与
BE
所成角的余弦值;
(2)求二面角
A
-
DF
-
B
的大小.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-02 04:40:18
答案(点此获取答案解析)
同类题1
在正三棱柱
中,已知
,
,
,
,
分别是
,
和
的中点.以
为正交基底,建立如图所示的空间直角坐标系
.
⑴求异面直线
与
所成角的余弦值;
⑵求二面角
的余弦值.
同类题2
在三棱柱
中,
,
,
,
,
。
(1)设
,异面直线
与
所成角的余弦值为
,求
的值;
(2)若
是
的中点,求平面
和平面
所成二面角的余弦值。
同类题3
如图,在所有棱长均为
a
的直三棱柱
ABC
—
A
1
B
1
C
1
中,
D
,
E
分别为
BB
1
,
A
1
C
1
的中点,则异面直线
AD
,
CE
所成角的余弦值为( )
A.
B.
C.
D.
同类题4
在边长为
的正方体
中,异面直线
与
所成角的大小为( )
A.
B.
C.
D.
同类题5
在四面体
中,若
,
,
,底面
是边长为
的正三角形,
为
的中心,则
的余弦值为
______
.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用