刷题首页
题库
高中数学
题干
如图,已知正方形
ABCD
和矩形
ACEF
中,
AB
=
,
CE
=1,
CE
⊥平面
ABCD
.
(1)求异面直线
DF
与
BE
所成角的余弦值;
(2)求二面角
A
-
DF
-
B
的大小.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-02 04:40:18
答案(点此获取答案解析)
同类题1
如图,直三棱柱
,底面
中,
,
,棱
,
、
分别是
、
的中点.
(1)求
的长;
(2)求
的值;
(3)求证:
;
(3)求
与平面
所成的角的余弦值.
同类题2
(用空间向量方法)如图,正方体
的棱长为
,
为棱
的中点.
(I)求
与
所成角的大小.
(II)求
与平面
所成角的正弦值.
(III)求平面
与平面
所成角的余弦值.
同类题3
如图:在直三棱柱
中,
,
.
(1)求多面体
的体积;
(2)异面直线
与
所成角的大小.
同类题4
如图,在正方体
中,
M
、
N
分别是
CD
、
的中点,则异面直线
与
DN
所成角的大小是
A.
B.
C.
D.
同类题5
如图,在直三棱柱
ABC
A
1
B
1
C
1
中,∠
ABC
=
,
D
是棱
AC
的中点,且
AB
=
BC
=
BB
1
=2.
(1)求证:
AB
1
∥平面
BC
1
D
;
(2)求异面直线
AB
1
与
BC
1
的夹角.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用