刷题首页
题库
高中数学
题干
如图1,在
中,
,
,
分别为线段
,
的中点,
,
.以
为折痕,将
折起到图2中
的位置,使平面
平面
,连接
,
,设
是线段
上的动点,且
.
(1)证明:
平面
;
(2)试确定
的值,使得二面角
的大小为
.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-19 01:19:14
答案(点此获取答案解析)
同类题1
如图所示,已知四边形
ABCD
是平行四边形,
P
点是四边形
ABCD
所在平面外一点,连接
PA
、
PB
、
PC
、
PD
,设点
E
、
F
、
G
、
H
分别为△
PAB
、△
PBC
、△
PCD
、△
PDA
的重心.试用向量法证明
E
、
F
、
G
、
H
四点共面.
同类题2
如图,在边长为2的正方体
中,
是
的中点,
是
的中点.
(1)求证:
平面
;
(2)求平面
与平面
夹角的余弦值.
同类题3
如图所示,
平面
,且四边形
为矩形,四边形
为直角梯形,
,
,
.
(1) 求证:
平面
;
(2) 求平面
与平面
所成锐二面角的余弦值.
同类题4
如图,四边形ABCD是正方形,PA
平面ABCD,EB//PA,AB=PA=4,EB=2,F为PD的中点.
(1)求证AF
PC
(2)BD//平面PEC
(3)求二面角D-PC-E的大小
同类题5
四棱锥
中,
面
,
为菱形,且有
,
,∠
,
为
中点.
(Ⅰ)证明:
面
;
(Ⅱ)求二面角
的平面角的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明