刷题首页
题库
高中数学
题干
如图,在三棱柱ABC-A
1
B
1
C
1
中,AA
1
C
1
C是边长为4的正方形.平面ABC⊥平面AA
1
C
1
C,AB=3,BC=5.
(1)求证:AA
1
⊥平面ABC;
(2)求二面角A
1
-BC
1
-B
1
的余弦值;
上一题
下一题
0.99难度 解答题 更新时间:2018-01-08 01:29:47
答案(点此获取答案解析)
同类题1
如图,在直四棱柱
中,
,
:
(1)求证:
平面
;
(2)现将与四棱柱
形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为
,写出
的解析式;(直接写出答案,不必说明理由)
同类题2
如图,等腰梯形
中,
,
,
,取
中点
,连接
,把三角形
沿
折起,使得点
在底面
上的射影落在
上,设
为
的中点.
(1)求证:
平面
;
(2)求二面角
的余弦值.
同类题3
我们知道,在平面几何中,点到直线的距离是点到直线上任一点距离的最小值.那么在立体几何中,一条斜线与平面所成的角是否有类似的结论?如果有请你写出相应的结论并给予证明;如果没有,请举反例.
同类题4
如图,四边形
是矩形,沿对角线
将
折起,使得点
在平面
上的射影恰好落在边
上.
(1)求证:平面
平面
;
(2)(理科做)当
时,求二面角
的余弦值.
(2)(文科做)当AB=2,AD=1时,求点B到平面ADC的距离.
同类题5
如图,
是等腰直角三角形,
,
,
分别为
的中点,沿
将
折起,得到如图所示的四棱锥
(1)求证:
平面
;
(2)当四棱锥
体积取最大值时,
(i) 写出最大体积;
(ii) 求
与平面
所成角的大小.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直