刷题首页
题库
高中数学
题干
如图,在四棱锥
中,
平面
,底面
是菱形,
,
.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求直线
与平面
所成角的正切值;
(Ⅲ)设点
在线段
上,且二面角
的余弦值为
,求点
到底面
的距离.
上一题
下一题
0.99难度 解答题 更新时间:2019-08-30 07:41:10
答案(点此获取答案解析)
同类题1
如图所示,
为
的直径,点
在
上(不与
重合),
平面
,点
分别为线段
的中点.
为线段
上(除点
外)的一个动点.
(1)求证:
平面
;
(2)求证:
.
同类题2
如图,四边形
ABCD
为菱形,四边形
ACFE
为平行四边形,设
BD
与
AC
相交于点
G
,
AB
=
BD
=
AE
=2,∠
EAD
=∠
EAB
.
(1)证明:平面
ACFE
⊥平面
ABCD
;
(2)若直线
AE
与
BC
的夹角为60°,求直线
EF
与平面
BED
所成角的余弦值.
同类题3
在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,
试确定
的值,使得二面角Q—BD—P为45°.
同类题4
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马
中,侧棱
底面
,且
,
为
中点,点
在
上,且
平面
,连接
,
.
(Ⅰ)证明:
平面
;
(Ⅱ)试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知
,
,求二面角
的余弦值.
同类题5
如图,在几何体
中,四边形
是菱形,
,平面
平面
,
.
(1)求证:
;
(2)若
,求几何体
的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直