刷题首页
题库
高中数学
题干
在直三棱柱
中,
,
,
,
M
,
N
分别是
、
上的点,且
.
(1)求证:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 02:09:14
答案(点此获取答案解析)
同类题1
已知四边形
为正方形,
平面
,四边形
与四边形
也都为正方形,连接
,点
为
的中点,有下述四个结论:
①
; ②
与
所成角为
;
③
平面
; ④
与平面
所成角为
.
其中所有正确结论的编号是( )
A.①②
B.①②③
C.①③④
D.①②③④
同类题2
如图,在正方体
ABCD
﹣
A
1
B
1
C
1
D
1
中,棱长为2,
M
,
N
分别为
A
1
B
,
AC
的中点.
(1)证明:
MN
//
B
1
C
;
(2)求
A
1
B
与平面
A
1
B
1
CD
所成角的大小.
同类题3
如图正方体
的棱长为
a
,以下结论不正确的是( )
A.异面直线
与
所成的角为
B.直线
与
垂直
C.直线
与
平行
D.三棱锥
的体积为
同类题4
如图,在三棱锥
中,
平面
ABC
,
,
,
.以点
B
为原点,分别以
,
,
的方向为
x
,
y
,
z
轴的正方向,建立空间直角坐标系,设平面
PAB
和
PBC
的法向量分别为
和
,则下面选项中正确的是( )
A.点
P
的坐标为
B.
C.
可能为
D.
同类题5
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,
BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点
(1)证明:直线EE1∥平面FCC1
(2)求:二面角B-FC1-C的余弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明