刷题首页
题库
高中数学
题干
将边长为2的正方形
ABCD
沿对角线
BD
折叠,使得平面
平面
CBD
,又
平面
AB
A.
(1)若
,求证:
;
(2)若二面角
的大小为
,求线段
AE
的长.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 10:46:03
答案(点此获取答案解析)
同类题1
如图,平面
平面
,
,四边形
为平行四边形,
,
为线段
的中点,点
满足
.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)若平面
平面
,求直线
与平面
所成角的正弦值.
同类题2
如图,在直四棱柱
ABCD
-
A
1
B
1
C
1
D
1
中,底面四边形
ABCD
为菱形,
A
1
A
=
AB
=2,∠
ABC
=
,
E
,
F
分别是
BC
,
A
1
C
的中点.
(1)求异面直线
EF
,
AD
所成角的余弦值;
(2)点
M
在线段
A
1
D
上,
.若
CM
∥平面
AEF
,求实数
λ
的值.
同类题3
已知长方体
中,
,点
N
是
AB
的中点,点
M
是
的中点.建立如图所示的空间直角坐标系.
(1)写出点
的坐标;
(2)求线段
的长度;
(3)判断直线
与直线
是否互相垂直,说明理由.
同类题4
正方体
ABCD
-
A
1
B
1
C
1
D
1
的棱长为 2,且
AC
与
BD
交于点
O
,
E
为棱
DD
1
中点,以
A
为原点,建立空间直角坐标系
A
-
xyz
,如图所示.
(Ⅰ)求证:
B
1
O
⊥平面
EAC
;
(Ⅱ)若点
F
在
EA
上且
B
1
F
⊥
AE
,试求点
F
的坐标;
(Ⅲ)求二面角
B
1
-
EA
-
C
的正弦值.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明