刷题首页
题库
高中数学
题干
(题文)(题文)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°PA=PD=AD=2BC=2,CD=
,PB=
,Q是AD的中点,M是棱PC上的点,且PM=3MC.
(Ⅰ)求证:平面PAD⊥底面ABCD;
(Ⅱ)求二面角M﹣BQ﹣C的大小.
上一题
下一题
0.99难度 解答题 更新时间:2016-05-05 06:30:27
答案(点此获取答案解析)
同类题1
如图,在四棱锥
中,底面ABCD为平行四边形,PA⊥底面ABCD,
,
,
,
.
(1)求证:平面PCA⊥平面PCD;
(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角
的余弦值.
同类题2
如图,在三棱柱
中,侧棱垂直于底面,
,
,
、
分别为
、
的中点.
(1)求证:平面
平面
;
(2)求证:
平面
;
(3)求三棱锥
的体积.
同类题3
如图,四棱柱
中,
底面
,底面
是梯形,
,
,
.
(1)求证:平面
平面
;
(2)在线段
上是否存在一点
,使
平面
,若存在,请确定点
的位置;若不存在,请说明理由.
同类题4
如图,已知
为等边三角形,
为等腰直角三角形,
.平面
平面
ABD
,点
E
与点
D
在平面
ABC
的同侧,且
,
.点
F
为
AD
中点,连接
EF
.
(1)求证:
平面
ABC
;
(2)求证:平面
平面
ABD
.
同类题5
如图,四棱锥
中,底面
是边长为2的正方形,侧面
底面
,
为
上的点,且
平面
(1)求证:平面
平面
;
(2)求三棱锥
体积的最大值;
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
面面垂直的判定
证明面面垂直