刷题首页
题库
高中数学
题干
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
为正方形,平面
PAD
⊥底面
ABCD
,
PD
⊥
AD
,
PD
=
AD
,
E
为棱
PC
的中点
(
I
)证明:平面
PBC
⊥平面
PCD
;
(
II
)求直线
DE
与平面
PAC
所成角的正弦值;
(
III
)若
F
为
AD
的中点,在棱
PB
上是否存在点
M
,使得
FM
⊥
BD
?若存在,求
的值,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-09-27 09:29:07
答案(点此获取答案解析)
同类题1
已知四棱锥
的底面为直角梯形,
,
°,
底面
,且
,
是
的中点.
(1)证明:平面
平面
;
(2)求
与
所成角的余弦值;
(3)求平面
与平面
所成二面角(锐角)的余弦值.
同类题2
如图,四边形
是直角梯形,
,
,
,
,又
,
,
,直线
与直线
所成的角为
.
(1)求证:平面
平面
;
(2)求三棱锥
的体积.
同类题3
如图所示,正四棱锥
中,
为底面正方形的中心,侧棱
与底面
所成的角的正切值为
.
(1)求侧面
与底面
所成的二面角的大小;
(2)若
是
的中点,求异面直线
与
所成角的正切值;
(3)问在棱
上是否存在一点
,使
⊥侧面
,若存在,试确定点
的位置;若不存在,说明理由.
同类题4
如图,四棱锥P﹣ABCD的底面是边长为
的菱形,∠BCD=120°,PC⊥平面ABCD,PC=
,E为PA的中点,O为底面对角线的交点;
(1)求证:平面EDB⊥平面ABCD;
(2)求二面角
的正切值.
同类题5
如图,在多面体ABCDFE中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.
(1)若G点是DC的中点,求证:FG∥平面AED.
(2)求证:平面DAF⊥平面BA
A.
(3)若AE=AD=1,AB=2,求三棱锥D-AFC的体积.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
面面垂直的判定
证明面面垂直
空间位置关系的向量证明