刷题首页
题库
高中数学
题干
如图,在四棱锥
中,侧面
底面
ABCD
,侧棱
,底面
ABCD
为直角梯形,其中
,
,
O
为
AD
中点.
(1)求证:
平面
ABCD
;
(2)求异面直线
PB
与
CD
所成角的余弦值;
(3)线段
AD
上是否存在点
Q
,使得它到平面
PCD
的距离为
若存在,求出
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 填空题 更新时间:2011-04-02 11:11:03
答案(点此获取答案解析)
同类题1
如图,在三棱柱
中,
和
均是边长为2的等边三角形,平面
平面
,点
为
中点.
(1)证明:
平面
;
(2)求三棱锥
的体积.
同类题2
如图,在三棱锥SABC中,侧面SAB与侧面SAC都是等边三角形,∠BAC=90°,O是BC的中点.求证:
是平面ABC的一个法向量.
同类题3
已知正方体
.
(1)求证:
平面
;
(2)求证:
平面
.
同类题4
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=A
A.
(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积
同类题5
如图,在梯形
ABCD
中,
AB
∥
CD
,
AD
=
DC
=
CB
=1,∠
BCD
=120°,四边形
BFED
为矩形,平面
BFED
⊥平面
ABCD
,
BF
=1.
(1)求证:
AD
⊥平面
BFED
;
(2)点
P
在线段
EF
上运动,设平面
PAB
与平面
ADE
所成锐二面角为
θ
,试求
θ
的最小值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直
求线面角