刷题首页
题库
高中数学
题干
如图,四边形
为梯形,
,
平面
,
,
,
,
为
中点.
(1)求证:平面
平面
;
(2)线段
上是否存在一点
,使
平面
?若有,请找出具体位置,并进行证明:若无,请分析说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2015-04-13 04:40:41
答案(点此获取答案解析)
同类题1
在如图所示的多面体中,四边形
和
都为矩形.
(Ⅰ)若
,证明:直线
平面
;
(Ⅱ)设
,
分别是线段
,
的中点,在线段
上是否存在一点
,使直线
平面
?请证明你的结论.
同类题2
如图,四棱锥
中,
底面
,
,底面
是直角梯形,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)在棱
上是否存在一点
,使
//平面
?若存在,请确定
点的位置;若不存在,请说明理由.
同类题3
如图,四棱锥
,平面
平面
ABE
,四边形
ABCD
为矩形,
,
F
为
CE
上的点,且
平面
ACE
.
(1)求证:
;
(2)设
M
在线段
DE
上,且满足
,试在线段
AB
上确定一点
N
,使得
平面
BCE
,并求
MN
的长.
同类题4
如图,四棱锥
中,
底面
,底面
为梯形,
,
,且
,点
是棱
上的动点.
(Ⅰ)当
平面
时,确定点
在棱
上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角
的余弦值.
同类题5
如图,在四棱锥
中,
,
是梯形,且
,
,
.
(1)求证:
;
(2)求三棱锥
的体积;
(3)在棱
上是否存在点
,使得
平面
?若存在,求
得值;若不存在,说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
证明面面垂直