刷题首页
题库
高中数学
题干
如图的几何体中,
.底面
是正三角形,
.四边形
是矩形,且平面
底面
.
(Ⅰ)
在
上运动,当
在何处时,有
平面
,并且说明理由;
(Ⅱ)当
平面
时,求二面角
余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-19 04:41:27
答案(点此获取答案解析)
同类题1
(本小题满分12分)如图,三棱柱ABC-A
1
B
1
C
1
中,平面ABB
1
A
1
⊥底面ABC,
,∠A
1
AB=120°,D、E分别是BC、A
1
C
1
的中点.
(Ⅰ)试在棱AB上找一点F,使DE∥平面A
1
CF;
(Ⅱ)在(Ⅰ)的条件下,求多面体BCF-A
1
B
1
C
1
的体积.
同类题2
如图,在四棱锥
中,底面ABCD是直角梯形,其中
,
,
,E为SC的中点,
Ⅰ
证明:
平面SAD;
Ⅱ
若
,
,且
,求三棱锥
的体积.
同类题3
如图所示,在三棱柱
中,
D
,
E
分别是线段
BC
,
的中点.
(1)在线段
AB
上是否存在一点
M
,使直线
平面
?
(2)在问题1中,若存在点
M
,
M
点在什么位置?
(3)如何证明你的结论?
同类题4
如图,四棱锥
的底面
为直角梯形,
,且
,
,
,平面
底面
,
为
的中点,
为等边三角形,
是棱
上的一点,设
(
与
不重合).
(1)若
平面
,求
的值;
(2)当
时,求二面角
的大小.
同类题5
如图,在四棱锥
中,
,
是梯形,且
,
,
.
(1)求证:
;
(2)求三棱锥
的体积;
(3)在棱
上是否存在点
,使得
平面
?若存在,求
得值;若不存在,说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
补全线面平行的条件
求二面角