刷题首页
题库
高中数学
题干
如图,在边长为2的正方体
中,
是
的中点,
是
的中点.
(1)求证:
平面
;
(2)求平面
与平面
夹角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-12 01:09:15
答案(点此获取答案解析)
同类题1
如图,在直三棱柱
中,
,
为棱
的中点
.
(1)证明:
平面
;
(2)已知
且
为线段
上一点,且三棱锥
的体积为
,求
.
同类题2
(本小题满分12分)如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求三棱锥A-PBC的体积.
同类题3
如图
,在矩形
中,
,
为
的中点,
为
的中点.将
沿
折起到
,使得平面
平面
(如图
).
图1 图2
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
同类题4
如图,在正三棱柱
中,
,
,
分别为
,
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求
与平面
所成角的正弦值.
同类题5
正方体
中,
E
、
F
、
G
、
H
分别为
、
BC
、CD、BB、
的中点,则下列结论正确的是( )
A.
B.平面
平面
C.
面
AEF
D.二面角
的大小为
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
空间位置关系的向量证明