刷题首页
题库
高中数学
题干
(衡水金卷2018年普通高等学校招生全国统一考试模拟试卷)一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为__________.
上一题
下一题
0.99难度 填空题 更新时间:2018-06-20 09:41:10
答案(点此获取答案解析)
同类题1
圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.
同类题2
在正方体
中,
为线段
的中点,若三棱锥
的外接球的体积为
,则正方体的棱长为()
A.
B.
C.
D.
同类题3
已知
A,B,C
是球面上三点,且
,
,
,球心
O
到平面
ABC
的距离等于球半径的一半,求球的表面积和体积.
同类题4
在四棱锥
中,已知侧面
为等边三角形,底面
为矩形,
,若二面角
所成平面角为
,那么四棱锥
的外接球的体积为______________.
同类题5
南北朝时代的伟大科学家祖暅提出体积计算原理:“幂势既同,则积不容异”. 意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等. 图1中阴影部分是由曲线
、直线
以及
轴所围成的平面图形
,将图形
绕
轴旋转一周,得几何体
. 根据祖暅原理,从下列阴影部分的平面图形绕
轴旋转一周所得的旋转体中选一个求得
的体积为__________.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
球的体积和表面积
球的体积的有关计算
多面体与球体内切外接问题