刷题宝
  • 刷题首页
题库 高中数学

题干

在中,,、分别在、上,,,将沿折起,连接,,当四棱锥体积最大时,二面角的大小为(  )
A.B.C.D.
上一题 下一题 0.99难度 单选题 更新时间:2018-05-11 07:38:18

答案(点此获取答案解析)

同类题1

现为一球状巧克力设计圆锥体的包装盒,若该巧克力球的半径为3,则其包装盒的体积的最小值为__________.

同类题2

如图,将边长为的正六边形沿对角线翻折,连接、,形成如图所示的多面体,且.

(I)证明:平面平面;
(II)求三棱锥的体积.

同类题3

如图,在三棱柱中,底面为正三角形,侧棱底面.已知是的中点,.

(Ⅰ)求证:平面平面;
(Ⅱ)求证:∥平面;
(Ⅲ)求三棱锥的体积.

同类题4

如图,三棱锥B-ACD的三条侧棱两两垂直,BC=BD=2,E,F,G分别是棱CD,AD,AB的中点.

(1)证明:平面ABE⊥平面ACD;
(2)若四面体BEFG的体积为,且F在平面ABE内的正投影为M,求线段CM的长.

同类题5

如图,正方体的棱长为1,E为棱上的点,为AB的中点,则三棱锥的体积为 .
相关知识点
  • 空间向量与立体几何
  • 空间几何体
  • 空间几何体的表面积与体积
  • 柱、锥、台的体积
  • 锥体体积的有关计算
  • 二面角
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)