刷题首页
题库
高中数学
题干
如图
,四边形
为等腰梯形
沿
折起,使得平面
平面
为
的中点,连接
(如图2).
图1 图2
(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成的角的正弦值.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-04 03:41:51
答案(点此获取答案解析)
同类题1
如图所示,扇形所含中心角为
,弦
将扇形分成两部分,这两部分各以
为轴旋转一周,求这两部分旋转所得旋转体的体积
和
之比.
同类题2
如图,直三棱柱
中,
,
是
中点.
证明:
平面
;
线段
上是否存在点
,使三棱锥
的体积为
?若存在,确定点
的位置;若不存在,说明理由.
同类题3
三棱锥
中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥
的体积等于()
A.3
B.
C.2
D.4
同类题4
正方体
中,
AB
=2,
P
是
的中点,则四棱锥
的体积为
____________
.
同类题5
一个四棱锥的三视图如图所示,则这个四棱锥的体积为
;表面积为
.
相关知识点
空间向量与立体几何
空间几何体
空间几何体的表面积与体积
柱、锥、台的体积
锥体体积的有关计算
求线面角