刷题首页
题库
高中数学
题干
如图所示的几何体中,正方形
所在平面垂直于平面
,四边形
为平行四边形,
为
上一点,且
平面
,
.
(1)求证:平面
平面
;
(2)当三棱锥
体积最大时,求直线
与平面
所成角的正切值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 08:38:57
答案(点此获取答案解析)
同类题1
如图所示的几何体中,四边形
是正方形,
同类题2
如图,底面为矩形的直棱柱
满足:
,
,
.
(1)求直线
与平面
所成的角
的大小;
(2)设
、
分别为棱
、
上的动点,求证:三棱锥
的体积
为定值,并求出该值.
同类题3
如图1,在等腰直角三角形
中,
,
,
、
分别是
,
上的点,
,
为
的中点,将
沿
折起,得到如图2所示的四棱锥
,其中
.
(1)证明:
平面
;
(2)求二面角
的平面角的余弦值;
(3)求直线
与平面
所成角的正弦值.
同类题4
已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上且
.
(1)求证:BE⊥PC;
(2)求直线CD与平面PAD所成角的大小;
(3)求二面角A﹣PD﹣B的大小.
同类题5
在正四面体
ABCD
中,点
E
,
F
分别是
AB
,
BC
的中点,则下列命题正确的序号是
______
①异面直线
AB
与
CD
所成角为90°;
②直线
AB
与平面
BCD
所成角为60°;
③直线
EF
∥平面
ACD
④平面
AFD
⊥平面
BCD
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面角
求线面角
证明面面垂直