刷题首页
题库
高中数学
题干
已知三棱柱
中,
平面
,
于点
,点
在棱
上,满足
.
若
,求证:
平面
;
设平面
与平面
所成的锐二面角的大小为
,若
,试判断命题“
”的真假,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 11:24:52
答案(点此获取答案解析)
同类题1
如图,已知三棱锥P-ABC,D,E,F分别是棱PA,PB,PC的中点.求证:平面DEF∥平面AB
A.
同类题2
在正方体ABCD-A
1
B
1
C
1
D
1
中,E是棱BC的中点,试在棱CC
1
上求一点P,使得平面A
1
B
1
P⊥平面C
1
DE.
同类题3
正三棱柱
的所有棱长均为2,
是侧棱
上任意一点.
(1)判断直线
与平面
是否垂直,请证明你的结论;
(2)当
时,求二面角
的余弦值.
同类题4
如图,在四棱柱ABCDA
1
B
1
C
1
D
1
中,侧棱A
1
A⊥底面ABCD,AB⊥AC,AB=1,AC=AA
1
=2,AD=CD=
,且点M和N分别为B
1
C和D
1
D的中点.
(Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求二面角D
1
-AC-B
1
的正弦值;
(Ⅲ)设E为棱A
1
B
1
上的点.若直线NE和平面ABCD所成角的正弦值为
,求线段A
1
E的长.
同类题5
如图5,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,
,
.
(1)求证:AC⊥BF;
(2)求二面角F—BD—A的余弦值;
(3) 求点A到平面FBD的距离.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明