刷题首页
题库
高中数学
题干
如图,
AE
⊥平面
ABCD
,
CF
∥
AE
,
AD
∥
BC
,
AD
⊥
AB
,
AB
=
AD
=1,
AE
=
BC
=2.
(1)求证:
BF
∥平面
ADE
;
(2)若二面角
E
-
BD
-
F
的余弦值为
,求线段
CF
的长.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-16 04:52:12
答案(点此获取答案解析)
同类题1
如图,正三棱柱
的所有棱长都为2,
为
中点,试用空间向量知识解下列问题:
(1)求证
面
;
(2)求二面角
的余弦值.
同类题2
如图所示,四棱锥
的底面为直角梯形,
,
,
,
,
底面
,
为
的中点.
(Ⅰ)求证:平面
平面
(Ⅱ)求直线
与平面
所成的角的正弦值.
同类题3
如图,在四棱锥
中,底面
是边长为
的菱形,
,
平面
,
,
,
为
的中点.
(1)求证:
;
(2)求异面直线
与
所成角的余弦值;
(3)判断直线
与平面
的位置关系,请说明理由.
同类题4
如图所示的多面体中,
EA
⊥平面
ABC
,
DB
⊥平面
ABC
,
AC
⊥
BC
,
CM
⊥
AB
,垂足为
M
,且
AE
=
AC
=2
,
BD
=2
BC
=4,
(1)求证:
CM
⊥
ME
;
(2)求二面角
A
﹣
MC
﹣
E
的余弦值.
(3)在线段
DC
上是否存在一点
N
,使得直线
BN
∥平面
EMC
,若存在,求出
的值;若不存在,请说明理由.
同类题5
如图,在四棱锥
中,
,
,
,
,
,点
在线段
上,且
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的正弦值;
(Ⅲ)在线段
上是否存在点
,使得
,若存在,求出线段
的长,若不存在,说明理由.
相关知识点
空间向量与立体几何
空间向量与立体几何
空间向量的应用
空间位置关系的向量证明