刷题首页
题库
高中数学
题干
已知数列
,
的首项
,且满足
,
,其中
,设数列
,
的前项和分别为
,
.
(Ⅰ)若不等式
对一切
恒成立,求
.
(Ⅱ)若常数
且对任意的
,恒有
,求
的值.
(Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:
(ⅰ)若存在唯一正整数
的值满足
;
(ⅱ)
恒成立.试问:是否存在正整数,使得
,若存在,求
的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-07 06:39:51
答案(点此获取答案解析)
同类题1
已知各项都是正数的等比数列
,满足
(1)证明数列
是等差数列;
(2)若
,当
时,不等式
对
的正整数恒成立,求
的取值范围.
同类题2
已知数列
满足
.
(1)证明:数列
为等差数列;
(2)设数列
的前n项和为
,若
,且对任意的正整数
n
,都有
,求整数
的值;
(3)设数列
满足
,若
,且存在正整数
s
,
t
,使得
是整数,求
的最小值.
同类题3
已知等比数列
是递减数列,
,数列
满足
,且
.
(1)证明:数列
是等差数列;
(2)若对任意
,不等式
总成立,求实数
的最大值.
同类题4
________
.
同类题5
已知数列
,
,
为数列
的前
项和,向量
,
,
.
(1)若
,求数列
通项公式;
(2)若
,
.
①证明:数列
为等差数列;
②设数列
满足
,问是否存在正整数
,
,且
,
,使得
、
、
成等比数列,若存在,求出
、
的值;若不存在,请说明理由.
相关知识点
数列
等差数列
等差数列及其通项公式
由递推关系证明数列是等差数列
求等差数列前n项和
求等比数列前n项和