刷题宝
  • 刷题首页
题库 高中数学

题干

已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2014-05-29 08:54:45

答案(点此获取答案解析)

同类题1

已知函数的图象过点.
(1)求函数的解析式;
(2)记,是否存在正数,使得对一切均成立,若存在,求出的最大值;若不存在,说明理由.

同类题2

已知数列满足,且对任意都有,则实数的取值范围为__________.

同类题3

数列{an}的通项公式为an=-2n2+4n-33,则数列{an}中最大的一项是________.

同类题4

已知数列的前项和为,且,若不等式恒成立,则正实数的取值范围是__________.

同类题5

记为数列的前项和,若,,则的最大值为( )
A.-1B.C.1D.2
相关知识点
  • 数列
  • 数列的概念与简单表示法
  • 递增数列与递减数列
  • 确定数列中的最大(小)项
  • 等比数列通项公式的基本量计算
  • 求等比数列前n项和
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)