刷题首页
题库
高中数学
题干
已知
是各项为正数的等差数列,公差为
,对任意的
,
是
和
的等比中项.
(1)设
,
,求证:
是等差数列;
(2)若
,
,
,
(Ⅰ)求数列
的前
项和
;
(Ⅱ)求数列
的前
项和
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 06:11:46
答案(点此获取答案解析)
同类题1
已知数列
满足
,数列
满足
.
(Ⅰ)求数列
的通项
;
(Ⅱ)求证:数列
为等比数列;并求数列
的通项公式.
同类题2
各项均为正数的数列
的前
项和为
,且对任意正整数
,都有
.
(1)求数列
的通项公式;
(2)如果等比数列
共有
项,其首项与公比均为
,在数列
的每相邻两项
与
之间插入
个
后,得到一个新的数列
.求数列
中所有项的和;
(3)如果存在
,使不等式
成立,求实数
的范围.
同类题3
数列{
}中,
,
,且满足
,
(1)设
,求
;
(2)设
,
,
,
,是否存在最大的正整数
,使得对任意
均有
成立?若存在求出
的值;若不存在,请说明理由.
同类题4
数列
满足递推式
(1)求
a
1
,
a
2
,
a
3
;
(2)若存在一个实数
,使得
为等差数列,求
值;
(3)求数列{
}的前n项之和.
同类题5
已知各项均为正数的数列{
a
n
}的前
n
项和
S
n
满足
S
1
>1,且
(
n
Î
N
*
).
(1)求{
a
n
}的通项公式;
(2)设数列
满足
,
T
n
为数列{
b
n
}的前
n
项和,求
T
n
;
(3)设
*(
为正整数),问是否存在正整数
,使得当任意正整数
n
>
N
时恒有
C
n
>2015成立?若存在,请求出正整数
的取值范围;若不存在,请说明理由.
相关知识点
数列
等差数列
等差数列及其通项公式
由递推关系证明数列是等差数列
求等差数列前n项和
裂项相消法求和