刷题首页
题库
高中数学
题干
设函数f(x)=e
x
-ax-1.
(1)当a>0时,设函数f(x)的最小值为g(a),求证:g(a)≤0;
(2)求证:对任意的正整数n,都有1
n
+1
+2
n
+1
+3
n
+1
+…+n
n
+1
<(n+1)
n
+1
.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-10 07:53:10
答案(点此获取答案解析)
同类题1
设函数
.
(1)求
的极值;
(2)证明:
.
同类题2
已知函数
,
.
函数
在点
处的切线与直线
垂直,求a的值;
讨论函数
的单调性;
当
时,证明:不等式
成立
其中
,
,
同类题3
已知
.
(1)若
有两个零点,求
的范围;
(2)若
有两个极值点,求
的范围;
(3)在(2)的条件下,若
的两个极值点为
,求证:
.
同类题4
已知
是函数
的极值点.
(Ⅰ)求实数
的值;
(Ⅱ)求证:函数
存在唯一的极小值点
,且
.
(参考数据:
)
同类题5
已知曲线
的一条切线过点
.
(Ⅰ)求
的取值范围;
(Ⅱ)若
,
.
①讨论函数
的单调性;
②当
时,求证:
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用
利用导数证明不等式
利用导数研究不等式恒成立问题