刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数的定义域是.
(1)判断在上的单调性,并证明;
(2)若不等式对任意恒成立,求实数的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2017-11-26 09:35:31

答案(点此获取答案解析)

同类题1

设函数对任意的实数、都有,且当时,.
(1)在你学过的函数中,有没有满足上述条件的函数?若有,试举一例;
(2)试探求的值,并写出过程;
(3)求证:当时,;
(4)试猜想的单调性,并证明你的结论.

同类题2

若函数同时满足:(1)对于定义域内的任意,有;(2)对于定义域内的任意,当时,有,则称函数为“理想函数”.给出下列四个函数:①;②;③;④.
其中是“理想函数”的序号是(    )
A.①②B.②③C.②④D.③④

同类题3

下列函数中,在其定义域内,既是奇函数又是减函数的是(  )
A.B.C.D.

同类题4

已知函数f(x)是定义域为R的奇函数,当x<0时,.
(1)求f(2)的值;
(2)用定义法判断y=f(x)在区间(-∞,0)上的单调性.
(3)求的解析式

同类题5

已知实数,定义域为的函数是偶函数,其中为自然对数的底数.
(Ⅰ)求实数值;
(Ⅱ)判断该函数在上的单调性并用定义证明;
(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)