刷题宝
  • 刷题首页
题库 高中数学

题干

f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
上一题 下一题 0.99难度 解答题 更新时间:2017-11-26 02:35:41

答案(点此获取答案解析)

同类题1

已知实数,函数.
(1)当时,求函数的值域;
(2)当时,判断函数的单调性,并证明;
(3)求实教的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.

同类题2

(1)运用函数单调性定义,证明:函数在区间 (0,+∞)上是单调减函数;
(2)设a 为实数, 0 <a < 1 ,若 0 <x < y,试比较和的大小,并说明理由.

同类题3

定义在上的奇函数在上递增, 且,则满足的的集合为________。

同类题4

已知是奇函数,且其图象经过点和.
(1)求的表达式;
(2)用单调性的定义证明:在上是减函数;
(3)在上是增函数还是减函数?(只需写出结论,不需证明)

同类题5

已知函数是定义在上的奇函数,且对任意实数,都有,则满足不等式的的取值范围为______.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 抽象函数的奇偶性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)