刷题宝
  • 刷题首页
题库 高中数学

题干

设函数,,其中.
(1)若是关于的不等式的解,求的取值范围;
(2)求函数在上的最小值;
(3)若对任意的,不等式恒成立,求的取值范围;
(4)当时,令,试研究函数的单调性,求在该区间上的最小值.
上一题 下一题 0.99难度 解答题 更新时间:2019-11-20 02:33:22

答案(点此获取答案解析)

同类题1

下列函数中,在其定义域内既是奇函数又是增函数的是(    )
A.B.C.D.

同类题2

关于函数,下列命题中所有正确结论的序号是______.
①其图象关于轴对称; ②当时,是增函数;当时,是减函数;
③的最小值是; ④在区间上是增函数;

同类题3

对于函数,定义域为,以下命题正确的是(只要求写出命题的序号)
①若,则是上的偶函数;
②若对于,都有,则是上的奇函数;
③若函数在上具有单调性且则是上的递减函数;
④若,则是上的递增函数。

同类题4

定义在上的函数满足:①任意,都有;②时,有.
(1)判定在上的奇偶性,并说明理由;
(2)判定在上的单调性,并给出证明.

同类题5

已知函数对于任意的实数都有成立,且当时<0恒成立.
(1)判断函数的奇偶性;
(2)若=-2,求函数在上的最大值;
(3)求关于的不等式的解集.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)