刷题首页
题库
高中数学
题干
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
上一题
下一题
0.99难度 解答题 更新时间:2019-11-20 02:33:19
答案(点此获取答案解析)
同类题1
已知函数
的定义在
上的偶函数,且当
时有
.
⑴判断函数
在
上的单调性,并用定义证明.
⑵求函数
的解析式(写出分段函数的形式).
同类题2
已知函数
f
(
x
)=
为奇函数.
(1)求
b
的值;
(2)证明:函数
f
(
x
)在区间(1,+∞)上是减函数;
(3)解关于
x
的不等式
f
(1+
x
2
)+
f
(-
x
2
+2
x
-4)>0.
同类题3
下列函数中,在区间
不是增函数的是( )
A.
B.
C.
D.
同类题4
函数
是定义在
上的奇函数,且
.
(
)确定函数
的解析式.
(
)判断并用定义证明
在
上的单调性.
(
)若
,求实数
的所有可能的取值.
同类题5
已知定义域为
的函数
是奇函数.
(1)求
的值;
(2)用函数单调性的定义证明
在
上是减函数.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
利用函数单调性求最值