刷题宝
  • 刷题首页
题库 高中数学

题干

设,
(1)求函数的定义域;
(2)判断的单调性,并根据函数单调性的定义证明;
(3)解关于的不等式;
上一题 下一题 0.99难度 解答题 更新时间:2019-12-14 12:50:49

答案(点此获取答案解析)

同类题1

下列函数是偶函数且在上单调递减的是(   )
A.B.
C.D.

同类题2

已知是定义在上的奇函数,当,,且时,有.
()比较与的大小.
()若,试比较与的大小.
()若,,对所有,恒成立,求实数的取值范围.

同类题3

已知函数是奇函数.
(1)求实数的值;
(2)用定义证明函数在上的单调性;
(3)若对任意的,不等式恒成立,求实数的取值范围.

同类题4

已知函数,存在不等于1的实数使得.
(Ⅰ)求的值;
(Ⅱ)判断函数在上的单调性,并用单调性定义证明;
(Ⅲ)直接写出与的大小关系.

同类题5

函数的定义域关于原点对称,但不包括数,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件.
(1)是定义域中的数,,则;
(2)是一个正的常数);
(3)当时,.
证明:(I)是奇函数;
(II)是周期函数,并求出其周期;
(III)在内为减函数.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)