挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,….则第6次应拿走的是()


A.②号棒 | B.⑦号棒 | C.⑧号棒 | D.⑩号棒 |
如图,C在直线BE上,∠ABC与∠ACE的角平分线交于点
,∠A=m,若再作∠
、∠
的平分线,交于点
;再作∠
、∠
的平分线,交于点
;……;依次类推,则
为_______.









将连续的奇数1,3,5,7,9,…排成如图所示的数阵.用框框住5个数.
(1)将此框上、下、左、右平移,可以框住另外5个数,若中间的数为a,用代数式表示此框中由小到大的另4个数,并求这五个数的和.
(2)此框中的5个数的和能等于2020吗?若能,请写出这5个数;若不能,请说明理由.
(1)将此框上、下、左、右平移,可以框住另外5个数,若中间的数为a,用代数式表示此框中由小到大的另4个数,并求这五个数的和.
(2)此框中的5个数的和能等于2020吗?若能,请写出这5个数;若不能,请说明理由.

定义新运算: a★b=a(1-b)a,b是实数,如:-2★3=-2x(1-3)=4,
(1)求(-2)★(﹣1)的值;(2)已知a
b,试说明 a★b
b★a.
(1)求(-2)★(﹣1)的值;(2)已知a


计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:
例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )
A.16 | B.1C | C.1A | D.22 |
我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算如将(101)2,(1011)2换算成十进制数分别是(101)2=1×22+0×21+1=4+0+1=5,(1011)2=1×23+0×22+1×21+1=11,按此方式将二进制(1001)2+(10110)2换算成十进制数的结果是_____.
高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常繁琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100 ①
则S=100+99+98+…+1 ②
①+②,得(即左右两边分别相加):
2S=(1+100)+(2+99)+(3+98)+…+(100+1),
=
,
=100×101,
所以,S=
③,
所以,1+2+3+…+100=5050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.请你利用“倒序相加法”解答下面的问题.
(1)计算:1+2+3+…+101;
(2)请你观察上面解答过程中的③式及你运算过程中出现的类似③式,猜想:1+2+3+…+n= ;
(3)至少用两种方法计算:1001+1002+…+2000.
方法1:
方法2:
解:设S=1+2+3+…+100 ①
则S=100+99+98+…+1 ②
①+②,得(即左右两边分别相加):
2S=(1+100)+(2+99)+(3+98)+…+(100+1),
=

=100×101,
所以,S=

所以,1+2+3+…+100=5050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.请你利用“倒序相加法”解答下面的问题.
(1)计算:1+2+3+…+101;
(2)请你观察上面解答过程中的③式及你运算过程中出现的类似③式,猜想:1+2+3+…+n= ;
(3)至少用两种方法计算:1001+1002+…+2000.
方法1:
方法2: