根据阅读材料,解决问题.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=
,若G(s)•G(t)=84,求k的最小值.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=

求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也,以等数约之.”意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数:

两条平行线间的距离公式
一般地;两条平行线
间的距离公式
如:求:两条平行线
的距离.
解:将两方程中
的系数化成对应相等的形式,得
因此,
两条平行线
的距离是____________.
一般地;两条平行线


如:求:两条平行线

解:将两方程中


因此,

两条平行线

四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2017次交换位置后,小兔子坐在( )号位上.


A.1 | B.2 | C.3 | D.4 |
阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为
,所以
,从而
(当a=b时取等号).
阅读2:函数
(常数m>0,x>0),由阅读1结论可知:
,所以当
即
时,函数
的最小值为
.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为
,周长为
,求当x=__________时,周长的最小值为__________.
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,
的最小值为__________.
问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
阅读1:a、b为实数,且a>0,b>0,因为



阅读2:函数







阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为


问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,

问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:
a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;
b.从第2堆拿出4张牌放到第1堆里;
c.从第3堆牌中拿出8张牌放在第1堆里;
d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;
e.从第2堆中拿出5张牌放在第1堆中.
小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为( )
a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;
b.从第2堆拿出4张牌放到第1堆里;
c.从第3堆牌中拿出8张牌放在第1堆里;
d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;
e.从第2堆中拿出5张牌放在第1堆中.
小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为( )
A.14,17 | B.14,18 | C.13,16 | D.12,16 |
如图为手的示意图,大拇指、食指、中指、无名指、小指分别标记为字母A,B,C,D,E,请按A→B→C→D→E→D→C→B→A→B→C→…的规律,从A开始数连续的正整数1,2,3,4,…,当数2018时,对应的手指字母为_____ .

下列名人中:①比尔•盖茨;②高斯;③袁隆平;④诺贝尔;⑤陈景润;⑥华罗庚;⑦高尔基;⑧爱因斯坦,其中是数学家的是( )
A.①④⑦ | B.③④⑧ | C.②⑥⑧ | D.②⑤⑥ |